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Abstract—Understanding and quantifying the inertia of power 

systems with the integration of converter-interfaced generation 

(CIG) plays an essential role in the safe transition to a future low-

inertia scenario. This paper provides a comprehensive summary 

of inertia definitions for both synchronous generators and CIGs as 

well as their corresponding estimation methods. In particular, the 

estimation methods are categorized as model-based and 

measurement-based approaches considering both small and large 

disturbances. The advantages and disadvantages of different 

methods are carefully discussed. This paper also offers for the first 

time a framework to quantify the virtual inertia of CIGs at the 

component and aggregation levels, an open problem in the 

literature. Finally, future directions for inertia estimation are 

identified and discussed. This significantly benefits the design of 

appropriate control and protection schemes in achieving a more 

reliable, secure, and resilient power system.  

Index Terms— Converter interfaced generations, frequency 

stability, inertia estimation, low-inertia system, power system 

stability, synchronous generators, virtual inertia emulation. 

I. INTRODUCTION 

N the past decades, increasing penetration of converter-

interfaced generation (CIGs)—such as photovoltaics (PVs), 

and wind—have been integrated into power systems to replace 

traditional synchronous generators (SGs) [1]. In 2019, the total 

wind capacity was 650.8 GW globally [2] and that of PV was 

580.1 GW [3]. However, the power electronics converter 

decouples the electrical interactions between generators and the 

power systems. This significantly reduces the system inertia as 

more and more SGs are replaced by CIGs, imposing a great 

challenge for maintaining system stability. The inertia of an SG 

is defined as the ratio between its kinetic energy and its rated 

power [14]; therefore, power system inertia is inherently 

provided by generators and turbines, which have kinetic energy 

stored in their rotating rotor masses [5]. Inertia helps counter 

frequency variations from the nominal value in the presence of 

power and generation before the primary response is activated. 

With increasing penetrations of CIGs, the total inertia of the 

power system, which is defined as the weighted sum of SGs’ 

inertia, is gradually decreasing. This is because CIGs do not 

inherently provide inertia, i.e., PV systems, or because its 

inertia is isolated from the power systems due to the power 

converters [6]-[7], i.e., wind power. Fig. 1 shows the scenario 

where the replacement of traditional SGs with CIGs leads to 

reduced system inertia. The reduced inertia might lead to the 

unintended triggering of over-/underfrequency relays, load-

shedding, and special protection schemes [8]-[9]. Indeed, 

because of the reduced system inertia, the rate of change of 

frequency (ROCOF) can reach unacceptable levels and might 

lead to cascading failures and blackouts (Australia, 2016; and 

the United Kingdom, 2019 [10]-[11]) [12].  

To address these issues caused by low inertia, an accurate 

estimation of inertia is needed. Because of the intermittent 

nature of CIGs and loads, SGs might be switched on and off 

more frequently, yielding time-varying power system inertia 

[13]. With the development of wide-area measurement systems 

[14], the continuous awareness of power system inertia 

becomes a reality. In addition to inertia estimation, another 

challenge is how to quantify the virtual inertia from some CIGs. 

In CIGs, there are various types of energy storage systems, 
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Fig. 1. Illustration of the reduced inertia in a power system with a high penetration of CIGs 
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including flywheels, capacitors, and batteries [5]. Because 

power converters are fast and allow CIGs to act more quickly 

than SGs [6], these types of energy storage systems can be used 

for frequency support via converter-based control—namely, 

virtual inertia emulation (VIE). The virtual inertia offered by 

the control of CIGs can be used to increase the inertial response 

of power systems [15]. The placement of virtual inertia in the 

power system also plays an important role in regulating the 

frequency response [16]. This calls for the development of new 

frameworks and methods to quantify virtual inertia from CIGs. 

This paper aims to provide a comprehensive understanding 

of both rotating inertia and virtual inertia from CIGs and to 

review the corresponding estimation techniques. The 

contributions are summarized as follows: 

• A comprehensive review of inertia estimation techniques 

is provided for SGs, including the model-based and 

measurement-based approaches. Different from [17] that 

categorizes inertia estimation approaches based on time 

horizon, this paper classifies the inertia estimation 

methods according to the types of modeling and the scale 

of disturbance. The advantages and disadvantages of 

different methods are also carefully discussed, and 

potential directions for improvements are offered. 

• This is the first attempt to propose new potential 

algorithms for the estimation of the inertia from different 

VIE-based CIGs according to their various control 

characteristics. It allows us to quantitatively assess the 

contributions of CIGs and help predict future needs. 

• New insights for future work on quantifying power 

system inertia considering CIGs and their potential 

applications are extensively discussed to shed light on 

developing new monitoring and control tools for the 

secure and reliable integration of more CIGs. 

The rest of the paper is organized as follows. Section II 

shows the definitions of power system inertia, followed by a 

summary of different inertia estimation approaches in Section 

III. Section IV shows a new framework for the virtual inertia 

estimation of CIGs. Finally, Section V presents the conclusion 

and future work. 
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Fig. 2. Frequency responses with different timescales in a power system. 

II. DEFINITION OF POWER SYSTEM INERTIA 

Generally, inertia is defined as the resistance to the change in 

the speed of the rotating masses in the SG-dominated system. 

By contrast, since CIGs generally provide virtual inertia via 

appropriate control, the inertia from CIGs needs to be carefully 

defined.  

A. Frequency Response and Inertia Constant 

During the imbalance between generation and demand, 

frequency responses with different timescales are involved in 

the power system, see Fig. 2 [18]. After a disturbance, e.g., a 

generation outage, the inertial response (generally less than 10 

s) takes place. During the inertial response, the kinetic energy 

stored in the SGs is released to reduce the power generation loss 

so that the frequency nadir, can be reduced and the ROCOF is 

decreased [19]. Note that the frequency nadir is defined as the 

minimum value of frequency reached during the transient 

period. The primary response (generally 10 s–30 s) using the 

speed-governor control is activated to further reduce the 

frequency deviation. Finally, the secondary response, with 

automatic generation control (AGC), takes place within 

minutes to restore the frequency to the nominal level [8],[20]. 

In inertial response, rotating inertia mainly comes from 

generators and turbines in SGs [21]. Once a disturbance occurs, 

the unbalanced torque is applied to the rotors of the SGs, which 

causes an acceleration or deceleration of the SGs; thus, in a 

power system with 
SGN SGs, the swing equation of the i-th SG 

can be formulated as [22]:   
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where 
,g i , 

iD , 
,m iP , and ,e iP  are the deviation of the 

rotor speed, the damping factor, the mechanical power, and the 

electrical power of the i-th SG, respectively. 
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SG i i m B iH J S=  is called the inertia constant, which is 

defined as the ratio between the kinetic energy and the rated 

power of the i-th SG, where 
iJ , ,B iS are the moment of inertia 

and the rated power of the i-th SG, respectively; and
0m  is the 

rated rotor speed. Depending on the types of SGs (i.e., hydro, 

nuclear and thermal, etc.), the rotational inertia constant ranges 

from 1.75 s to approximately 10 s, as shown in Table I [23]. 

Generally, with a given type of SGs, the larger the rated power, 

the larger the rotational inertia constant is. The right side of Eq. 

(1) represents the power imbalance caused by the disturbance. 

It can be concluded that small inertia leads to a large change 

rate of the rotor speed when the power unbalance is large. 

TABLE I 

THE INERTIA CONSTANT OF DIFFERENT TYPES OF POWER PLANTS 

Power plant type Inertia Constant (s) 

Hydro 1.75 ~ 4.75 

Nuclear 4 

Thermal 2 ~ 10 
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 In the literature, the power system center of inertia frequency 
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=   can be taken as a global 

parameter for a region so that all SGs can be aggregated into 

one equivalent unit. Then, Eq. (1) is rewritten as: 
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where mP  and eP  are the total mechanical power change 

and the total electrical power deviation of the whole power 

system, respectively; 
sysD  is the system damping factor and

sysH  is the rotational inertia constant of the regional system and 

can be calculated via: 
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From Eq. (2), it can be found that the inertia constant shows 

the resistance to the change in rotor speed by exchange active 

power with the power system. With high penetrations of CIGs, 

the definition of inertia needs to be changed considering the 

different power control methods of CIGs. 

B. Inertia Considering CIGs 

In power converter-dominated power systems, a large number 

of SGs are replaced by CIGs; however, CIGs are initially 

inertia-free because of their operational characteristics. Among 

these CIGs, wind, and PV generations are the most promising 

sources [24]; however, the maximum power point tracking 

control is used [25]-[26], which prevents wind and PV 

generation from providing active power support to counteract 

the frequency change [27]. Note that doubly-fed induction 

generators (DFIGs) have been widely applied due to their 

variable speed constant frequency operation capacity [28]. 

Though DFIGs have rotating inertia from wind turbines, that is 

isolated by power converters. 

Although CIGs typically do not have three frequency 

response processes like SGs, including inertia response, 

primary frequency response via speed-governor control, and 

AGC, a virtual inertia response can be conducted through the 

control of power converters [29]. Therefore, the non-rotating 

inertia can be obtained from CIGs through suitable control 

methods.  Assuming there are CIGN  CIG units with virtual 

inertia control in the power system, the definition of inertia 

considering CIGs can be obtained as [23], [30]: 
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leading to a more general swing equation as: 
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where
eq  is the deviation of the equivalent frequency; 

eqD is 

the equivalent damping factor; 
eqH  is the equivalent inertia; 

,CIG jH  is the virtual inertia of the j-th CIG; and 
,B jS  denotes 

the rated power of the j-th CIG. Inertia in Eq. (5) consists of two 

parts: 1) the rotating inertia from SGs and 2) the virtual inertia 

from CIGs. Note that 
,CIG jH  is generally unknown and time-

varying because it depends on the operating states and control 

methods for CIGs. 

III. CLASSIFICATION OF INERTIA ESTIMATION APPROACHES 

In a conventional power system, the inertia constant is 

selected as the valuable reference for frequency control and 

protection [22]; however, the inertia constant becomes complex 

and time-varying because of the integration of CIGs, causing 

difficulties for operators to track it. Inertia estimation 

approaches can be divided into two main categories: 1) model-

based and 2) measurement-based approaches; see Fig. 3. They 

are discussed from Section III-A to Section III-B. 
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Fig. 3. Classification of inertia estimation approaches. 

 

A. Model-Based Inertia Estimation 

The model-based inertia estimation relies on a dynamic model 

of SGs, which can be written as [31]: 
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where, x , y , and θ  are the state variables, algebraic 

variables, and the parameters of the SG, respectively; f and h  

are nonlinear vector-valued functions; and u denotes the vector 
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of control inputs. Note that inertia constant is included in the 

parameters θ , and to estimate it, the objective function is [32] : 

 

 
0

0

1
ˆmin ( )

2

T

J dt= −θ y y   (7) 

 

where ŷ is the calculated values based on estimated θ , and 0T  

is the length of the dynamic trajectories of ŷ and y . 

    The induction motor also provides inertia after a disturbance; 

however, there are few works in the literature on that. These are 

estimated using experiments [33]-[34] or a parameter 

identification approach similar to Eq. (7) [35]. This subsection 

illustrates only model-based inertia estimation for SGs. 

 (1) Single SG inertia estimation: In [36], the extended 

Kalman filter is used to identify the inertia constant using the 

simplified generator model. The least-squares [37]-[38], 

optimization technique [39], and various Kalman filter methods 

[40]-[42] are also applied to identify the inertia constant in an 

SG subject to large disturbances. Following their work, an 

inertia estimation technique based on a Kalman filter for SGs 

with different controllers is proposed in [43]-[45]; however, 

they are limited to the reduced-order generator model. 

Extensions of them to the detailed model of SGs are done in 

[46]-[48], where both the balanced [46]-[47] and unbalanced 

operation conditions [48] are investigated. 

 (2) Regional system inertia estimation: To reduce the 

computational complexity of solving differential-algebraic 

equations (DAEs) with many SGs, the dynamic equivalent of 

SGs that have coherency is developed [49]; see Fig. 4. In other 

words, those SGs are taken as an equivalent SG, and this allows 

us to estimate the equivalent inertia of a regional system. In 

[50]-[51], the dynamic equivalent of a generator and a load in 

parallel are constructed, and their equivalent parameters are 

identified through the genetic algorithm. Along the same lines, 

an analytical dynamic equivalencing framework is developed in 

[52] for two-area and three-area power systems, but it is not 

suitable for multiarea power systems with more than three areas. 

To address that, the dynamic equivalent of multiarea power 

systems is achieved in [53]-[54] by decoupling the estimation 

process into two stages: the mechanical parameter (such as the 

inertia constant) estimation is followed by the electrical 

parameter (such as impedance) estimation, whereas [55]-[56] 

establish the dynamic equivalent of each area by obtaining the 

mathematical relationship between the dynamic parameters 

(inertia constant and damping factor) and the electromechanical 

oscillation parameters extracted from phasor measurement unit 

(PMU) measurements. Further, the mixed external equivalent 

(SGs + loads) of an area is proposed in [57] by merging the 

unknown parameters of different components into DAEs. 
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Fig. 4. Illustration of the dynamic equivalent of a regional power system 

 

 The model-based methods have been extensively used for the 

inertia estimation of SGs, but the estimation accuracy depends 

on the model accuracy. Specifically, the equivalent inertia 

estimation of a regional power system relies on a suitable area 

division based on SG coherency. Also, they might not be able 

to estimate the virtual inertia provided by CIGs if the dynamics 

of CIGs are not emulated by the swing equations or if the 

control schemes are unknown. Note that model-based virtual 

inertia estimation of non-synchronous devices is performed in 

[58]-[59] with frequency divider formula [60], which needs 

only the network admittance matrix and internal reactance 

obtained by Thevenin equivalent. However, the transmission 

line and the transformer parameters are always affected by 

uncertainties, leading to an imprecise network admittance 

matrix. Furthermore, the internal reactance of CIGs is difficult 

to identify. This motivates the measurement-based methods.  

B. Measurement-Based Inertia Estimation 

The development of wide-area measurement systems 

leveraging Global Positioning Systems provides massive real-

time measurements to enable wide-area monitoring and control 

applications [61]; thus, different inertia estimation strategies 

using PMU measurements have been proposed. In this section, 

these strategies are discussed and categorized from the 

perspective of using large disturbances or ambient data.  
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Fig. 5. The general process for measurement-based inertia estimation. 
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1) Large Disturbance-Based Inertia Estimation 

When power systems are subject to a large disturbance, the 

power imbalance in the inertial response stage is caused mainly 

by the electrical power deviation. This is because the generator 

governor has a longer response time than the inertial response. 

Subsequently, the mechanical power maintains a steady state or 

presents only an extremely small change in the inertial process 

[62]; therefore, to illustrate the frequency dynamics during the 

inertial response, Eq. (5) can be rewritten as: 
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Note that the damping term is too small to be neglected when 

performing inertia estimation. 

After a disturbance, some loads are frequency-dependent and 

voltage-dependent. This can affect the electrical power 

deviation, 
eP . Further, the size of the disturbance is a critical 

factor in affecting the electrical power deviation; thus, (8) is 

further converted to be [63]: 
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where
e L distP P P =  +  and

LP represents the power 

variations of frequency-independent and voltage-independent 

loads. 
distP  is the size of the disturbance. Generally, in some 

cases—such as generator tripping, load rejection, and outage of 

a feeder or a DC-link connection—the size of the disturbance 

can be known. From Eq. (9), the accurate inertia estimation is 

mainly determined by the change rate of rotor speed and the 

electrical power deviation.  Because the change rate of the rotor 

speed is unavailable in PMU measurements, the change rate of 

the generator terminal frequency—namely, the ROCOF—is 

used as a proxy. As a result, Eq. (8) is reformulated into 

2 eq b eH d f dt P = − , where bf  is the generator terminal 

frequency. The overall process of large disturbance-based 

inertia estimation is shown on the left-hand side of Fig. 5. 

 (1) ROCOF estimation: If ROCOF is directly calculated by 

the differential of frequency measurements, it is prone to noise 

[64].  Therefore, alternative approaches are developed to 

eliminate noise and sharp transient-type changes in frequency 

measurements, yielding a more accurate estimation of ROCOF. 

A fifth-order polynomial for the frequency response before the 

ROCOF estimation is first proposed in [65], whereas [66] 

assumes the average system frequency ( )f t  to be: 

 

 1

2( ) [1 sin( )]tf t k e t  −= + +  (10) 

 

where k , ,  , 1 , 2 ,   are the unknown parameters. 

The curve fitting [65]-[66] is performed using linear least-

squares so that the impacts of transients and noise on the 

ROCOF estimation can be minimized; however, the ROCOF 

estimation is affected by the frequency measurements beyond 

the inertial response. Thus, a 500-ms sliding window is 

employed to sample measurements in the time interval of 1 s 

after the disturbance [67], which avoids the impacts of the 

primary response. Following that work, [68] proposes a 

variable-order polynomial fitting for frequency response so that 

the adaptivity of the curve fitting is increased. Further, a linear 

frequency model is established to reduce the complexity of the 

curve-fitting model [69], which allows for the use of a short 

data window for ROCOF estimation. In [70], an equivalent 

second-order homogeneous differential equation is built to 

reconstruct the frequency deviation signal in a bus with the 

equivalent modes, avoiding the selection of a time window and 

the impacts of a phase step error. There is another kind of 

ROCOF estimation method based on the low-pass filter. To 

eliminate the transient sharp change and noise in frequency 

signals, a low-pass filter is employed to isolate the dominant 

system inertial frequency response [18], [73]-[74], whereas [75] 

combines the low-pass filter with the curve fitting to make a 

trade-off between the removal of oscillations and the minimum 

deviation between the original signals and the processed signals; 

however, the low-pass filter introduces a time delay.  

 (2) Disturbance power estimation: The accuracy in power 

imbalance estimation also has huge impacts on the inertia 

estimation. In [76], the electrical power deviation at the instant 

after the disturbance is used to perform the inertia estimation of 

a single SG. To eliminate the impacts of noise, [73] and [74] 

employ two sliding data windows to filter the noise in the active 

power before and after the disturbance, respectively. A fifth-

order polynomial is chosen to perform active power trajectory 

fitting at all generator terminals [68]; however, they assume that 

the electrical power can be measured at every terminal bus, 

which might not be practical. Thus, in [77], the inertia of the 

TABLE II 

COMPARISONS BETWEEN DIFFERENT METHODS FOR INERTIA ESTIMATION 

Estimation Category Estimation Window Advantages Disadvantages 

Model-based inertia estimation Seconds to tens of seconds 
 Explicitly mathematical 

expression 

 Dependent on modeling and large 

disturbance 

 Limited to the inertia estimation of SGs 

 Suffering from parameter uncertainties 

Measurement-based inertia estimation 

using large disturbance data  
Seconds 

 Model-free 

 Fast 

 Difficult to estimate ROCOF 

 The boundary between inertial response 

and primary response is unclear 

 Dependent on large disturbance 

 Using generator terminal bus frequency as 

a proxy for generator rotor speed 

Measurement-based inertia estimation 

using ambient data 
Minutes 

 Model-free 

 Continuous tracking of inertia 

 Using generator terminal bus frequency as 

a proxy for generator rotor speed 

 Vulnerable to measurement noise. 
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local area power system is obtained by applying a boundary 

power deviation to Eq. (8), relaxing the assumption that the 

electrical power can be measured at each bus. Further, in [78], 

the change of the aggregated load and the size of the disturbance 

are taken to represent the electrical power deviation, where the 

change in the aggregated load is depicted according to the 

overall voltage profile, 
sV ,  of the power system, see Eq. (11). 

 

 
0 ( 1)L L sP P V = −  (11) 

 

where
0LP  is the total load before the disturbance. This work is 

extended considering a small power change caused by the 

frequency dynamics associated with the governors [79]. 

Because the aggregation of the components is performed, it can 

calculate only the effective inertia of the power system.  

Once the disturbance happens, inertia can be estimated in 

seconds. But because the large disturbance-based inertia 

estimation relies on the occurrence of transient events, it might 

not be implemented to achieve continuous awareness of the 

inertia because the transient events are infrequent. Further, 

during the disturbance, the inertial response is difficult to 

distinguish from the primary response, especially when the time 

delay needs to be included in the virtual inertial control by the 

CIGs. The next section discusses ambient data-based inertia 

estimation. 

2) Ambient Data-Based Inertia Estimation 

Ambient data obtained from PMUs reflect the stochastic 

system response time series caused by random load and 

renewable energy changes [80]-[81]. The ambient data-based 

methods are developed for system inertia estimation as well as 

bus inertia estimation. In [82], the equivalent inertia estimation 

using the Markov Gaussian method is proposed, where the 

model is trained to extract the hidden relationship between the 

average frequency variations and the system inertia. Along this 

line, [83] uses ambient frequency deviation and active power 

deviation to build a multi-input–multi-output ARMAX model, 

which represents a combined model of the inertial response and 

the primary response. This allows for estimating the system 

inertia from the impulse response of the model. A closed-loop 

identification model shown in [84] is proposed to perform 

online system inertia estimation, but it requires a well-designed 

probing signal. The system inertia estimation is denoted as a 

regression model in [85] and can be solved by dynamic 

regressor extension and mixing. To estimate the inertia of the 

regional power system, [86] develops an online estimation of 

the effective inertia in each area by adopting the values of inter-

area oscillation modes calculated from ambient data. Further, a 

dynamic model for each generator is identified in [87], which 

relates the active power and bus frequency. Then, the inertia of 

each generator is extracted by applying a unit step signal to the 

identified model. This work is later extended to the bus inertia 

distribution estimation using the mathematical relationship 

between the bus frequency and the generator rotor frequency 

[88]. 

The overall process of ambient data-based inertia estimation 

is shown on the right-hand side of Fig. 5. Compared with other 

methods, the ambient data-based approaches can perform 

continuous estimation of inertia; however, minutes of data are 

needed to identify the dynamic model. The comparisons among 

different methods for inertia estimation are further summarized 

in Table II. 

3) Discussions of Challenges and Potential Solutions 

Although measurement-based inertia estimation methods are 

suitable for real-time inertia calculation, there is a key challenge 

limiting their application. Both are essentially based on the 

swing equation, so the rotor speed of SGs must be known; 

however, the rotor speed is approximated by the corresponding 

generator terminal bus frequency in the existing literature—this 

is because the measurements of the generators’ rotor speed and 

angle are not available [89]. Indeed, this approximation could 

lead to large errors, which is explained next.  

 

 
                           (a)                                                        (b) 

Fig. 6. Terminal bus frequency under different fault conditions: (a) 0.12pudx =

and the fault line is 9-39; (b) 0.006pudx = and the fault line is 9-39. 

 

(1) Terminal frequency errors in the presence of large 

disturbances. The generator’s rotor speed is one of the true 

state variables that govern the DAEs of power systems, so it 

does not change instantly; however, spikes caused by a 

disturbance—e.g., a short-circuit fault—lie in the generator 

terminal bus frequency because it is an algebraic variable 

derived by taking the derivative of the phase angle with respect 

to time. This leads to a large error in the ROCOF calculation. 

Take the simulation results from the IEEE 39-bus power system 

as an example [90]. When a three-phase short circuit applied on 

Bus 9 clears by removing line 9-39 after 0.33 second, Fig. 6(a) 

shows that there are spikes in the calculated terminal bus 

frequency. This greatly affects the accuracy of the ROCOF 

calculation.  

(2) Deviation between the rotor speed and the generator 

terminal frequency. According to the frequency divider 

formula [60], the relationship between the rotor speed and the 

generator terminal bus frequency can be described by: 

 

 
eq

e

g b

dP
f x

dt
 =  −   (12) 

 

where 
eqx  is the equivalent generator internal reactance. For 

example, for the round rotor generator, the d-axis transient 

reactance, dx  , equals 
eqx . bf  is the generator terminal bus 

frequency. According to Eq. (12), the larger the value of eqx , 

the greater the difference between the rotor speed and the 

terminal bus frequency; see Fig. 6(a) and Fig. 6(b). Therefore, 

to eliminate the terminal frequency error, an alternative way is 

to directly estimate the rotor speed. 
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(3) The impacts of measurement issues on power imbalance 

calculation. As illustrated in Section III-B, the influence of 

measurement noise on the power imbalance estimation can be 

mitigated; however, there can be bad data and missing data, 

which could significantly reduce the precision of the power 

imbalance determination. Further, not all buses are equipped 

with PMUs, so regional system inertia estimation can be 

challenging. More research is needed to estimate the power 

imbalance when estimating the regional system inertia. 

IV. VIRTUAL INERTIA ESTIMATION 

To mitigate frequency instability issues caused by the 

integration of CIGs, virtual inertia emulation (VIE) is widely 

studied to increase the inertia level in the power system [91]. 

VIE can be implemented via appropriate control strategies on 

converters. To quantify the entire inertia of power systems, VIE 

must be considered. However, there is limited work on virtual 

inertia estimation. Therefore, this section focuses on defining 

VIE and proposes potential methods for its quantification. 

A. Brief Summary of VIE Methods 

1) Direct Inertial Control-Based VIE 

Synthetic inertia - (SIC-) based VIE is performed based on 

the ROCOF and frequency deviation to realize the dynamic 

frequency regulation [92]. Its main control strategy is based on 

Eq. (13): 

 

 
( )   

c ref

b

ref d e b n

P P P

df
P K K f f

dt

= + 

= − − −
 (13) 

 

where 
refP  is the reference of active power; P  is the change 

of active power; and cP  is the active power controlled by the 

converter. The terminal frequency, bf , can be obtained from 

the terminal voltage angle using a phase-locked loop (PLL) 

[93], whereas nf  is the nominal frequency in the power system. 

dK  is the coefficient of the ROCOF loop, and eK  is the 

coefficient of the droop loop. The control scheme is illustrated 

in Fig. 7, where V  is the terminal voltage phasor.  

 

PLLV

ROCOF

Frequency 

Deviation

Eq. (13)
cP

refP

 
Fig. 7. The control scheme of SIC-based VIE. 

 

SIC-based VIE has been widely used in CIG applications. 

For wind generations, the coefficients dK  and eK are tuned 

according to the minimum frequency nadir and the maximum 

ROCOF in [94], whereas [95] calculates them from the 

viewpoint of protecting the wind turbine rotor from stalling. 

Further, because the coefficients are constant and thus lack 

adaptability during the inertia contribution, the dynamic 

adaptive coefficient eK -based inertial control is presented in 

[96]-[97]. In [96], eK  is obtained with a function of ROCOF so 

that the ROCOF loop can be merged into the droop loop to 

overcome the drawbacks in each loop. eK in [97] is calculated 

using the power margin of the wind turbine generator to avoid 

over-deceleration. For PV generation, the SIC-based VIE is 

developed mainly by using energy storage or the energy from 

the DC-link capacitor. In [98], the energy storage is used to 

provide SIC-based VIE in PV systems, and the size of the 

energy storage is also determined considering the maximum 

allowed frequency deviation during the disturbance. In addition 

to the energy storage, the energy from the PV DC-link capacitor 

is further used to provide inertia support in [99], though this 

requires PV to work below the maximum power point mode. 

Because energy storage is expensive, especially for small 

productions, the potential energy from the DC-link capacitor is 

extracted to perform the inertia emulation to reduce the cost and 

to improve the performance of VIE [100]. The DC-link 

capacitor and PV systems with suboptimal operation can also 

be coordinated for dynamic frequency regulation [101]. In 

[102], only PV systems are employed to provide SIC-based VIE, 

but PV systems should maintain sufficient power reserve for 

that. 

2) Virtual Synchronous Generator-Based VIE 

Virtual synchronous generator- (VSG-) based VIE emulates 

the SG model in the control algorithm of the coupling converter 

so that CIGs behave like an electrical rotating machine 

providing virtual inertia. VSG-based VIE can be achieved by 

controlling the charging or discharging of the storage devices 

or by acquiring excessive energy from inertia-free CIGs, such 

as PV and wind generation, both type 3 and 4. Generally, this 

control strategy can be divided into 1) grid-forming control and 

2) grid-following control [103], but the core component of the 

VSG-based VIE is the swing equation with the damping term, 

i.e., [104]: 

 

 2 VSG
in out VSG VSG VSG

d
P P H D

dt


− = +    (14) 

 

where VSGH is the virtual inertia; VSGD  is the damping factor; 

VSG  is the virtual rotor speed; inP  is the virtual shaft power; 

and outP  is the measured power output. Thus, the inertial 

characteristic of an SG is mimicked by the VSG. 

Increasing numbers of CIGs are being connected to power 

systems, leading to a significant reduction in inertia. A VSG is 

a promising approach to providing VIE to help regulate 

frequency [105]-[106]. Because the simplified model of an SG 

is embedded in converters, a VSG has the advantage of quickly 

adjusting the VIE parameters to obtain better performance on 

the frequency response; thus, variable inertia can be achieved 

during operations. Motivated by that, an alternating inertia 

control scheme is designed in [107], where the switch between 

the large inertia constant and the small inertia constant is 

defined according to the relative virtual rotor speed. The 

damping and stability effects of the alternating inertia control 

scheme are further clarified in [108] with the transient energy 

function analysis. Note that the inertia in these works is 

assumed to be constant during each time switch interval. The 

authors in [109] and [110] develop the self-adaptive VIE and 
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virtual damping control together to mitigate ROCOF and the 

frequency deviation while reducing the oscillations. 

3) Limitations of VIE Model 

VIE model can behave like input-output dynamics of SGs, so 

it is compatible with the legacy of power system. Though 

emulating inertial response is advocated for CIGs to support 

frequency, there are some limitations due to the limited capacity 

of converters [8]. On one hand, there are actuation delays, 

which can be up to 100 ms introduced by signal processing 

(such as PLL) and control loops in converters; on the other hand, 

VIE control is subject to current limitation during post-

contingency dynamics due to the limited current constraints of 

converters. Thus, VIE model has limited capability of imitating 

the inertial response of SGs and the complexity of the model is 

further increased. This calls for the development of new inertia 

estimation techniques. 

B. Inertia Estimation for CIGs with VIE Control 
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Fig. 8. VIE response of CIGs during frequency response. 

 

Different from SGs, the CIGs can leverage the PLL and 

inner-loop current control to achieve fast frequency control; 

however, these control schemes usually introduce a time delay, 

i.e., PLL, which means that the VIE control is not as quick as 

the physical rotating inertial response. Assuming that the time 

delay in the VIE control is T  and that its valid response is 

activated during the time shown by the dotted line in Fig. 8, it 

was found that some overlapping might exist in the primary 

response of SGs and the VIE response of CIGs. This results in 

challenges in inertia estimation, especially for regional systems 

with both SGs and CIGs. From Section IV-A, it is known that 

the time-varying VIE can be deployed for CIGs. To accurately 

quantify the available inertia, it is vital to extract the real-time 

inertia supplied from the CIGs themselves. The next subsection 

discusses the inertia estimation scheme for individual and 

aggregated CIGs. 

1) Individual CIG Inertia Estimation 
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Fig. 9. Block diagram for different types of CIGs: (a) PV and energy storage 

system [112]; (b) Full converter wind turbine (Type-4) [113]; (c) Doubly-fed 

induction generator (Type-3) [28]. 

 

TABLE III 

PROPOSED APPROACHES FOR INERTIA ESTIMATION OF CIGS 

The type of CIG 

inertia estimation 

The type of CIG VIE 

control 
The key requirements for 

inertia estimation 

Individual CIG 

inertia estimation 

SIC-based VIE of PV 

system and FCWT 

Tracking the time-varying 

coefficients 

All types of VIE 

control of DFIG 

Estimating rotor speed via 

DSE 

VSG-based VIE of PV 

system and FCWT 

Estimating virtual rotor 

speed via DSE 

Aggregated CIG 

inertia estimation 

All types of VIE 

control for CIGs 

Using total regional system 

inertia to subtract the inertia 

from other devices 

 

CIGs are typically integrated into power systems using 

converters; see Fig. 9. A PV system can be equipped with an 

energy storage device or operated in non-maximum power 

point mode to provide inertia. For the energy storage device, its 

capacity and state of charge (SOC) determine the available 

energy, which further limits the amount of virtual inertia that 

can be emulated via controls; the DC-DC converter is a boost 

chopper, which regulates the charging and discharge rate of 

energy storage device [112]. This also posts some limits on the 

virtual inertia emulation control. In contrast, the full-converter 

wind turbine (FCWT) [113]and DFIG perform VIE by 

controlling the grid-side converter and rotor-side converter by 

releasing the kinetic energy stored in the rotor. Fig. 8 shows that 

PV systems and FCWTs are completely decoupled from the 

power system, but DFIGs are not; thus, with different types of 

CIGs and VIE controls, it is important to develop various 

approaches for inertia tracking, which are summarized in Table 

III. 

Since DFIGs are still directly connected to the power system, 

their inertia can be estimated by obtaining rotor speed no matter 

which type of the VIE control is used; however, works on the 

rotor speed estimation of DFIGs are still limited because of 

their increased complexity compared to SGs [114]. Though the 

extended Kalman filter, the unscented Kalman filter, and the 

unscented particle filter-based dynamic state estimation (DSE) 

have been developed for DFIG rotor speed estimation [114]-

[117], the estimation accuracy needs to be further improved. 

VIE control should be also included for the DSE of DFIG. On 

the other hand, the DIFG model complexity might be very high 
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and is subject to various sources of uncertainty, a reduced-order 

model might be developed for rotor speed estimation without a 

loss of accuracy. Robust DSE is needed to be able to filter out 

the noise and suppress model uncertainties. 

Compared with DFIGs, PV systems and FCWTs are 

decoupled from the grid, so different methods are needed for 

inertia estimation. With SIC-based VIE, the core step is to 

obtain an accurate terminal frequency estimation so that the 

coefficients of SIC-based VIE can be calculated. But how to 

track the time-varying coefficients is still an open problem. 

With VSG-based VIE, this means that PV systems and FCWTs 

behave like SGs, so the virtual rotor speed in VSGs can be used 

to conduct inertia estimation. This requires an accurate 

estimation of the virtual rotor speed from measurements. DSE-

based approaches can be good candidates for that. Other signal-

processing-based parameter identification methods can also be 

developed. 

2) Aggregated CIG Inertia Estimation 

Individual inertia estimation model can provide a 

comprehensive insight for the temporal-spatial inertia 

distribution. However, the individual inertia estimation may not 

be very accurate or available due to the lack of sufficient 

number of measurements or inaccurate model. For some 

applications, we may be interested in the inertia available from 

the aggregated CIGs at a regional level. Performing the inertia 

estimation for each CIG and adding them together can be 

challenging and time-consuming.  

To address this issue, an alternative way to achieve this is to 

obtain the aggregated inertia from other devices, such as SGs 

and induction motors using a limited number of measurements. 

Once the inertia from these devices is determined and the 

regional system inertia is estimated via the boundary 

information—such as the boundary power and the boundary 

frequency—the inertia provided by the aggregated CIGs can be 

obtained by subtracting the inertia of other devices from that of 

the regional system. On the other hand, for a large wind or PV 

power plant with many small generators, an equivalent model 

that captures the swing equation responses can be inferred, and 

advanced system identification approaches should be proposed 

to estimate the aggregated inertia for them. Note that for a large 

wind or PV power plant, not all small generators are online or 

functioning properly, leading to time-varying aggregated inertia. 

This calls for the development of recursive estimation 

approaches to track time-varying aggregated inertia, such as 

recursive least squares and Kalman filter-based DSE. 

V. CONCLUSION AND FUTURE WORK 

This paper presents an overview of inertia definitions as well 

as the estimation methods for SGs and CIGs. The approaches 

in estimating SGs have been categorized into model-based and 

measurement-based methods. Individual-level and system-

level inertia estimation is also discussed. The advantages and 

disadvantages of different categories of inertia estimation 

methods are highlighted. This paper also offers a unique 

potential framework to quantify and track virtual inertia from 

CIGs. This paper can serve as a guideline for researchers in the 

area of inertia estimation. 

Although some progress has been obtained, there are many 

open problems, and some of them are discussed next: 

• Robust estimation of rotor speed and virtual internal 

frequency: Among various inertia estimation methods, SG 

terminal frequency is usually used as a proxy of rotor speed. 

This can lead to large errors, as illustrated in Section III-C; 

thus, it is necessary to develop proper approaches for rotor 

speed estimation for SGs or virtual internal frequency for 

VIE-based CIGs. For SGs, the estimation for the rotor 

speed should reach an acceptable accuracy as soon as 

possible (i.e., 2–3 seconds) because the inertia estimation 

of SGs is affected by the vague boundary between the 

inertial response and the primary response. Using the 

ambient measurements, an alternative way to perform 

inertia estimation for SGs might be to reconstruct rotor 

speed and the active power, such as the Koopman operator 

approach [119], but measurement issues—i.e., noise and 

bad data—need to be carefully addressed. For VIE-based 

CIGs, the control details are usually not known in practice, 

so the virtual internal frequency estimation for the black 

box should be formulated. Advanced system identification 

approaches and DSE are needed. Machine learning-based 

methods might also be developed to identify the 

relationship between inertia response and measurements 

after disturbances [120]. Reduced-order models for CIGs 

can be good candidates that allow us to develop 

optimization- or DSE-based methods in estimating and 

tracking time-varying virtual inertia from CIGs. The 

impacts of different control strategies and operating 

conditions on CIGs’ inertia should be carefully 

investigated. 

• Inertia estimation for CIGs using ambient 

measurements or local signal perturbations: The 

ambient measurement or local signal perturbation-based 

inertia estimation is promising in quantifying the inertia in 

power systems, whereas other approaches heavily depend 

on the occurrence of large disturbances, and accurate and 

detailed models are needed. On one hand, the existing 

works require minutes of measurements to obtain an 

accurate estimation of inertia. Determining the trade-off 

between computational efficiency and accuracy needs to be 

addressed, i.e., the selection of appropriate measurement 

channels and time windows. The control setting points of 

CIGs can be changed strategically to produce perturb 

signals for inertia identification. The magnitudes, as well 

as the lengths of the perturbations, must be properly 

designed. CIGs have much faster response speeds than SGs. 

When quantifying the system inertia, how to effectively 

distinguish the responses from SGs and CIGs for proper 

inertia estimation would be important in achieving high 

accuracy. Advanced clustering or machine learning 

approaches can be developed to identify the essential 

patterns for SGs and CIGs so that inertia quantifications of 

them are not cross-affected. 

• Inertia estimation uncertainty quantification: Because 

of the stochasticity and uncertain nature of CIGs, the inertia 

estimation outcomes also contain uncertainties. Providing 

confidence intervals for the estimated inertia would be 

essential to justify the estimation accuracy. Probabilistic 

estimation methods or variance-based analysis for an 
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estimator need to be developed so that the mean and its 

uncertainties can be derived. 

• Spatial-temporal inertia distribution analysis: Because 

increasing numbers of CIGs are equipped with VIE 

controllers, the virtual inertia varies all the time. For 

instance, if a PV system or wind generator is equipped with 

adaptive VIE, the virtual inertia will change with the 

system operating conditions. Because generators that 

provide inertia are placed at different locations, inertia is 

also spatially distributed. In other words, inertia is featured 

with the spatial-temporal distribution characteristic. 

Existing works mainly focus on exploring the local or 

systematic inertia tracking, and more research is needed to 

investigate the spatial-temporal inertia distributions on 

each bus. Also, the relationship between the spatial-

temporal bus inertia and the generator inertia needs to be 

better understood. This could be achieved via the 

frequency divider formula and electromechanical wave 

propagation theory [119]. This allows us to have both local 

and global views of frequency changes subject to 

disturbances, significantly enhancing the operator’s 

situational awareness. 

• Inertia-based applications: Inertia service is free in 

traditional SG-dominated power systems because SGs 

instantaneously respond to power imbalance. The 

replacement of SGs by CIGs significantly reduces the 

system inertia and the virtual inertia provided by CIGs may 

need incentives, e.g., adequately designed ancillary 

services so that enough virtual inertia from CIGs can be 

obtained. This calls for the development of inertia-

constrained unit commitment, inertia-constrained optimal 

power flow for frequency stability assessment, and stability 

control by harvesting inertia contributions from CIGs. The 

availability of online system inertia also allows us to 

predict the frequency nadir, benefiting the power reserve 

planning and preventive control. 
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