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A B S T R A C T

Transient stability assessment (TSA) plays an important role in the design and operation of power system. With
the widespread deployment of phasor measurement units (PMUs), the machine learning-based method has at-
tracted much attention for its speed and generalization. However, the generalization will deteriorate if some
features are missing due to PMU failure. In this paper, a spatial-temporal adaptive TSA method is proposed to
handle the missing data issue. By developing an optimal PMU clusters searching model based on temporal
feature importance, and by constructing an ensemble mechanism of long short-term memory (LSTM) for the
optimal PMU clusters, the spatial-temporal information is utilized adaptively. Therefore, the aim of maintaining
the robustness of TSA performance under any possible PMU failure event is achieved. The proposed approach is
demonstrated on New England 39-bus power system. Compared with existing methods, the proposed method
achieves state-of-art performance in both accuracy and response time under missing data conditions. In addition,
the proposed method is more robust in the case of PMU failure than others.

1. Introduction

Transient stability refers to the ability of power system to remain
synchronous when subjected to a severe disturbance [1]. The integra-
tion of intermittent renewable energy and changes of the grid structure
are significantly expanding the state space of power system operation.
Electricity market liberalization reduces the controllability of the dis-
patcher for the power system as well [2]. Consequently, the operation
of the power system is getting closer to its stability limit, and power
blackouts are more likely to occur in case of a large disturbance [3]. To
prevent the economic loss and social impact caused by losing transient
stability, real-time transient stability assessment (TSA) is essentially
implemented to leave enough time for post contingency remedial ac-
tions.

To achieve rapid and accurate TSA, time domain simulation (TDS) is
a classical method to assess the stability of power system by solving a
set of high dimensional differential algebraic equations [4]. Transient
energy function (TEF) [5–8] is also employed to predict the post-fault
stability by comparing the acquired transient energy at fault clearing
instant with the maximum potential energy that can be assimilated by
the power system. However, the speed and accuracy of those methods

cannot meet the requirement of TSA.
With the development of synchronous measurement technology, the

phasor measurement unit (PMU) has been applied successfully in the
supervisory control and data acquisition (SCADA) system due to its
capability for obtaining real-time measurements of the power system.
By using PMU, many data-driven TSA methods are proposed to capture
the post-fault dynamics behavior of power system [3]. Based on dis-
sipation theory in dynamic system, Lyapunov exponent (LE) [9] refers
to the exponential rate of convergence or separation between adjacent
trajectories in the operation space, and the maximal Lyapunov ex-
ponent (MLE) [10] can be used to quantitatively describe the short-term
stability of power system to detect the synchronism of generators. MLE
estimated by the recursive least-squares-based method is utilized to
assess the angle stability of the power system in a model-free way [11],
but it needs a large observation window to obtain reliable assessment
results. There are also methods using trajectory prediction to assess
transient stability. In [12], generator rotor speed-acceleration trajec-
tories from PMUs are used to predict and identify out-of-step status.
[13] utilizes linear autoregressive with exogenous input model to per-
form dynamic response estimation, which can be used as an effective
instability indicator. [14,15] propose an improved grey model to
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predict rotor angle dynamic trajectories so that transient stability can
be detected earlier than traditional TDS-based methods. However, tra-
jectory prediction can only perform accurate prediction in limited time
interval which cannot meet the requirement of power system transient
stability.

In addition, researches on artificial intelligence (AI) and big data
analysis technology are developing rapidly. Machine learning-based
methods (MLBM) for TSA present promising potential of application.
Once measurements are obtained from PMUs, the post-fault power
system stability can be assessed online by the machine learning model
trained in an offline manner, where inputs are selected or extracted
features. Therefore, MLBM is able to implement TSA in a real-time
manner to promote awareness of transient stability for the power
system and leave enough time to perform remedial control. Related
studies have shown the superiority of real-time TSA [16]. The support
vector machine (SVM) and its variants [17–20], such as the core vector
machine (CVM) [20], are employed to perform TSA and demonstrate
the excellent generalization ability and scalability of SVM/CVM to
predict the stability status of practical power system. Decision tree (DT)
has been widely applied to TSA, and DT-based rules are mined for the
out-of-step prediction of synchronous generators [21]. Refs. [22,23]
present probabilistic frameworks for TSA of power system by con-
sidering renewable generation with DT. Neural network (NN) is also
utilized to construct the TSA system with the rapid development of deep
learning [24,25]. [25] develops an end-to-end TSA model to simplify
the feature engineering process and a time-adaptive method is used to
implement transient stability prediction in [4,26]. The mapping re-
lationship between transient stability status and input features can be
built by training the above machine learning classifiers. Therefore,
transient stability status can be predicted once the constructed features
are obtained.

In practice, PMU failure, phasor data concentrator (PDC) failure and
communication delay may cause missing data in the power system [27].
In this case, the performance of MLBM to implement TSA may dete-
riorate drastically owing to the lack of input features. On the topic of
TSA with missing data, considerable efforts have been made by using
various techniques to deal with missing data. One feasible way is to
recover the missing data by learning the system model and real-time
measurements [28]. However, this strategy suffers computation bur-
dens, and it may not meet the required assessment speed of online TSA.
In [29], the DT with surrogate spilt (DTSS) method is proposed to
handle the unavailable measurement of PMUs through impairing
missing ones with highly correlated collocated features, which could
lead to the deteriorated accuracy for TSA possibly as the number of
missing data increases. In [30–32], an observability-constrained feature
subsets algorithm is designed, and a PMU clustering-based ensemble
classification model is then utilized to sustain the performance of sta-
bility assessment considering different missing-data scenarios. How-
ever, the above process is used to cluster PMUs under complete ob-
servability (with all features) of the power system, and it is not
concerned with the importance of PMU, which is unreasonable to some
extent. In addition, the temporal information is not utilized to further
improve the accuracy and response time in the above references.

To overcome the drawback of the above existing researches, a
spatial-temporal adaptive TSA to handle missing data is proposed in
this paper. The main contributions of this paper are as follows.

(1) A temporal feature importance calculation algorithm is designed to
perform quantitative analysis for the capability of temporal features
distinguishing classes in TSA, and the results of the algorithm is
further utilized to find the critical PMU clusters.

(2) The optimal PMU clusters searching model is constructed to obtain
observability-constrained feature subsets in this work. The model
maintains high generalization for TSA learning, and the risk of
missing data is minimized by capturing the critical PMU clusters.

(3) An ensemble mechanism of LSTMs is designed to integrate the TSA

classifiers with weighted averaging and implement spatial-temporal
TSA online adaptively, so it can maintain great robustness to
missing data.

(4) The proposed method attempts to employ spatial and temporal data
to make use of the remaining information provided by PMU mea-
surements adaptively after PMU failure occurs.

The rest of this paper is organized as follows. Section 2 builds the
optimal PMU clusters searching model based on the importance of
temporal features. The spatial-temporal adaptive TSA method is pre-
sented in Section 3 in detail. Section 4 demonstrates the effectiveness of
the proposed method on the New England 39-bus power system. Con-
clusions are drawn in Section 5.

2. Optimal PMU clustering

To find the critical PMU clusters to minimize the risk under any
possible PMU failure, the approach of temporal feature importance
calculation is first introduced, and an optimal PMU cluster-searching
model is then built to retain the maximum expectation of feature im-
portance under different PMU failure scenarios in this section.

2.1. Importance distribution of PMUs

The PMU is a kind of device to measure the alternating current (AC)
voltages and power flow in the branch synchronously with the common
time reference that is provided by global positioning system (GPS) [33].
With such a device installed at a specific bus, the voltage of that bus and
the power flow of all branches connected to it are measured. Then, the
observability of that bus and its incident buses can be confirmed. To
obtain complete observability of the power system, several PMUs need
to be installed at specific buses, which has been studied in many works
such as optimal PMU placement with minimal cost [34].

In the dynamic process of the power system after suffering dis-
turbance, some of generator rotors that are out-of-step cause transient
instability. The operation condition is defined by a set of system vari-
ables, or features, e.g., active and reactive power of generator, bus
magnitude and angle, power flow of branch. Therefore, some features
are relatively more important for TSA, which are able to represents the
dynamic characteristic of the power system. In other words, there are
some critical features in the power system. Consequently, this char-
acteristic can be described quantitatively by the importance of these
features. Since the physical measurements such as bus voltage magni-
tudes and angles that each PMU can acquire are different, the feature
importance of each PMU is also distinct for TSA.

In recent studies of TSA, feature importance is calculated to select
critical feature subsets that are necessary and sufficient to describe
transient stability, which reduces the dimensionality of the inputs and
enhances generalization by avoiding overfitting. The traditional TSA
generally assesses the power system measurements obtained at a certain
instant after a fault in an online manner, so the existing feature im-
portance calculation algorithm that can only handle vectors is not
suitable for data in the form of a matrix, such as multivariate time
series. However, inputs of the model in this paper is post-fault multi-
variate time series since the theme is time-adaptive TSA. If feature
importance is calculated separately for each moment, it will not reflect
the overall characteristics of features during the dynamic changes after
fault. Therefore, a temporal feature importance calculation method for
multivariate time series of TSA is proposed in this paper.

A popular feature importance calculation algorithm applied in the
power system is Relief-F [35], which estimates the ability of each fea-
ture to distinguish samples with different classes by assigning weights.
Relief-F not only considers the correlation between feature values and
target but also the difference between samples on specific features. The
difference can be defined as:
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where R1 and R2 are different samples in the database respectively, and
a is one of the features. Obviously, Relief-F cannot be applied if the
feature a is time series, so the temporal feature importance of the time
series calculation method by improving Relief-F is presented in this
paper, which is later called Relief-FT. Considering the different tran-
sient characteristics of various disturbances, such features as voltage
would be very low after unstable short-circuit fault while it can restore
to a relatively high level after stable short-circuit fault, so the formula
of difference between samples on the time series feature a can be re-
presented by Euclidean distance:
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where as is in the format of sequence for the feature a. The concrete
theoretic of the relief family can be seen in [35] and the pseudo code of
Relief-FT is shown in Algorithm 1, where m is a user-defined parameter
to decide the repeated times for the whole process, and I C( ) is the ratio
of class C in all samples.

Algorithm 1 Relief-FT feature importance calculation algorithm

Input: For each training sample ∈x R, a vector of features values A and length of
observation window T .

Output: A vector ∈W |A| of estimation of importance of features ∈a A.
1. set all W to 0;
2. for =i m1:
3. randomly select a sample xi;
4. for each class =C class (x )i
5. from class Cselect k nearest hits H;
6. end
7. for each class ≠C class (x )i
8. from class C select k nearest misses M;
9. end
10. for each a in A

11.
= − ∑ +

∑ ∑

=

≠ − =

a aW[ ] W[ ] j
k diff a i j

m k

C class i
I C

I C j
k diff a i j

m k

1
( , x , H )

·

(x )
( )

1 ( ) 1
( , x , M )

·

(3)

12. end
13. end

In Relief-FT, each feature is assigned with weight in the range of
[−1,1], which is the so-called importance to represent the ability to
distinguish samples with different targets. A positive value of the
weight indicates that the feature is very beneficial for classifying dif-
ferent patterns in TSA, while the negative value of the weight means the
feature overlaps the samples.

2.2. Optimal PMU clusters searching model

In recent work [30–32], the ensemble data-analytics model with
feature subsets sampling method is proposed to construct feasible in-
puts for PMU-based dynamic stability assessment considering in-
complete measurement data. Under any PMU loss scenario, the en-
semble model is able to maintain robustness against data loss for TSA
with minimal number of PMUs. However, existing researches do not
consider the importance of the PMU clusters in power systems to fur-
ther decrease the risk of lost PMUs. On the other hand, while data loss
occurs, temporal information can’t be effectively utilized to circumvent
such incidents in [30–32].

In this section, an optimal PMU clusters searching model is con-
structed not only to reduce the number of PMU clusters but also to
capture the critical PMU clusters to minimize the risk from missing
data. The power system observability description algorithm is first in-
troduced to build observability constraints of the optimal model, and it
can be accomplished by iterating the following observability rules [34]:

(1) Rule 1: The voltage and branch currents of the bus where the PMU
is installed are observable, and its incident bus is also observable.

(2) Rule 2: The voltages at both ends of the branch are observable, and
the current of the branch is observable.

(3) Rule 3: If the branch current and voltage at one end are known,
then the voltage at the other end of the branch is observable.

(4) Rule 4: If ZIB is not installed with PMU, and only one incident
branch current is unknown, then the branch current is observable.

(5) Rule 5: If ZIB is not installed with PMU, and voltages of all adjacent
buses are known, then the voltage of ZIB is observable.

When the observability status of each bus is unchanged, the itera-
tion is finished. Once the placement of PMUs in the power system is
given, the observability of each bus can be determined.

As introduced previously, MLBM will fail if some features of the
inputs are missing. Optimal PMU clusters are necessary to be searched
to integrate the MLBM models to reduce the impact with several inputs
that are composed of these PMU clusters. For a power system with N
PMUs, −2 1N possible PMU combinations can be found. In such si-
tuation, M PMU clusters are assumed to be searched:

=
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where n is the number of buses, qlk is 1 if PMU is installed at bus l in k-th
PMU cluster. Otherwise, qlk equals to 0, = ⋯l n1, 2, , , = ⋯k M1, 2, , .

In −2 1N possible PMU combinations, the probability of multiple
PMU failures occurring at the same time is very small. Therefore, the
risk for TSA with M PMU clusters can be defined as the expectation of
the ratio of feature importance missing by failure in arbitrary PMU
combination. To construct ensemble MLBM with low risk for TSA, the
objective function of the optimal PMU clusters searching model can be
formulated as follows:
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where Wψ k( ) is the importance set of observable temporal features that
consist of bus voltage magnitude, bus voltage angle, active power of
branch, reactive power of branch, active power of load, reactive power
of load, active power of generator and reactive power of generator in
the k-th PMU cluster. P j is the unavailability rate of j-th combination of
PMUs. CN

j is the formula of permutation. σi j, is a set vector that re-
presents the j-th combinations with i PMUs. ψ k( ) is a set vector showing
PMU locations in the k-th PMU cluster. β is an indication function that
is formulated as:

= ⎧
⎨⎩

∩ = ∅
∩ ≠ ∅β (x, y)

1 x y 
0 x y (6)

For the optimal PMU clusters searching model, the only constraint is
that union observability of all the PMU clusters can maintain full ob-
servability of the whole buses in the power system, which can be
written as:

⎧
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where = ⋯q q qq [ , , , ]k
k k nk

( )
1 2

T is a set vector that indicates PMU loca-
tions of the k-th PMU cluster, = ⋯V V VV [ , , , ]k

k k nk
( )

1 2
T is a set vector that

shows the observability of all the buses in the k-th PMU cluster and f (·)
is a function iterating the power system observability description
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algorithm to obtain observable features under certain PMU clusters.
Taking IEEE 9-bus power system as an illustration for the optimal

PMU clusters searching model, as shown in Fig. 1. PMU1 and PMU2
installed at bus 4 and bus 7 respectively can get full observability for
the system [34]. In the objective function, it is assumed that optimal
PMU clusters ψis {{4},{7},{4,7}}, so WΩ(1) is the sum of feature im-
portance in PMU set =ψ {4}1 , WΩ(2) is the sum of feature importance in
PMU set =ψ {7}2 and WΩ(3) is the sum of feature importance in PMU set

=ψ {4, 7}3 . The unavailability rate of different PMU combinations can
be denoted as =P PPMU1 1, =P PPMU2 2 and =P P PPMU PMU3 1 2 respec-
tively. In addition, σ1,1is {4}, σ2,1is {7} and σ1,2is {4,7}. In constrains,
PMU clusters matrix Q can be shown as:
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With the above illustrations, it can be concluded that formulation
(5) presents the sum of the negative ratio of available feature im-
portance under different PMU failures. Therefore, the minimization of
the objective function can represent the goal to decrease the risk of
PMU failures.

In the proposed optimal PMU clusters searching model, objective
function and constraints are nonlinear and not derivable, so the genetic
algorithm (GA) is employed to search the optimal solutions in this
paper. When the optimal PMU clusters are searched, each PMU cluster
provides its observable features (voltage magnitude, voltage angle,
et al) as inputs for each LSTM, which will be introduced in the next
section, respectively.

3. Temporal adaptive ensemble TSA

The PMU failure is assumed to be permanent, and it happens at
every instant with the same probability after the fault clearance in this
paper. Based on this assumption, in case some PMUs fail, the remaining
PMU clusters without missing data are still viable for TSA while the
temporal data before the time PMU failure occurrence is also available.
Therefore, an ensemble mechanism of LSTM is designed to make use of
the remaining spatial-temporal data that are not missing adaptively to
sustain the performance of accuracy and response time under any
possible PMU failure event.

3.1. Introduction to the LSTM Algorithm

LSTM is a variant of ANN, as shown in Fig. 2, which is designed to
construct a memory cell that can keep long term memory to maintain
long temporal dependence in the time domain [4]. The memory cell

consists of forget gate, input gate and output gate. These gates handle
historical information, input data and output information, respectively.
The memory cell of LSTM merges historical information and current
data to implement feature extraction. In this way, the memory state
with a specific timestamp ct can be acquired and passed to the next time
slot. The expression in mathematical form is presented as [4]:

= + +−g Sigmoid(W x U h b )t g t g t g1 (9)

= + +−i Sigmoid(Wx U h b )t i t i t i1 (10)

= + +−c Sigmoid(W x U h b )͠ t c t c t c~ ~ 1 ~ (11)

= ⊙ + ⊙− cc g c i ͠t t t t t1 (12)

Current output ht can be calculated with ct :

= + +−o Sigmoid(W x U h b )t o t o t o1 (13)

= ⊙h o Tanh(c )t t t (14)

where = + −xSigmoid( ) x
1

1 exp( ) , = − −
+ −Tanh x

x
1 exp( )
1 exp( ) , and W*, U* and b*are

the hyperparameters of the corresponding gate.
LSTM can be unrolled in time steps, as shown in Fig. 3. When time-

stamped data = ⋯X [x , x , , x ]T1 2 come, LSTM implements feature ex-
traction for X to get hidden layer output = ⋯H [h , h , ,h ]T1 2 at every time
step, and H is then transformed to = ⋯y y yY [ , , , ]T1 2 in the range [0, 1] by
sigmoid, where T is the length of the observation window. When LSTM
is applied in TSA online, it is able to perform accurate assessment step
by step through combining with historical and current information. For
instance, h1 is calculated with x1, and h2 is obtained with x1, x2, etc.

Therefore, even if most of the PMU data is missing, the power
system transient stability can be assessed at the next instant. It is pos-
sible to reduce the impacts of missing data caused by PMU failure or
communication delay via taking advantage of the temporal character-
istics of LSTM, while the optimal PMU clusters model decreases the
impactss of spatial characteristics in PMU placement.

3.2. Offline training

3.2.1. A single LSTM training
Before integrating LSTMs, each LSTM should be trained to acquire

good performance in the generalization subspace so that the advantages
of multiple LSTMs can be combined to perform reliable and rapid TSA.

In this paper, datasets, whose features consist of bus voltage mag-
nitude, bus voltage angle, active power of branch, reactive power of

Fig. 1. IEEE 9-bus power system.
Fig. 2. The structure of LSTM.

Fig. 3. LSTM unrolled in time steps.
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branch, active power of load, reactive power of load, active power of
generator and reactive power of generator since they present obvious
transient characteristics after disturbance [20,25,36], are generated by
TDS with a variety of different contingencies on the given power
system. To obtain high generalization for LSTMs, datasets are randomly
divided into training data, validating data and testing data at a certain
ratio. According to the searched PMU clusters, training data, validating
data and testing data are divided into several feature subsets respec-
tively. It should be noticed that the number of the features subsets
equals to the number of searched PMU clusters, so the same number of
LSTMs shall be trained. To deploy each LSTM to TSA applications, it is
necessary to train each LSTM with corresponding training data subset
including certain features. For MLBM of TSA belongs to supervised
learning, every sample in the datasets is calibrated with a stability label
according to its transient stability status. The label for each sample in
TSA can be defined as:

= ⎧
⎨⎩

⩽
>y

η
η

1 0
0 0 (15)

where = −
+η δ

δ
360
360

max
max

[4], and δmax is the maximum difference between
angles of any two generators at the end of the post-fault power system
simulation.

Given datasets Δ with F training data, optimal W*, U* and b* of each
LSTM can be found with the Adam optimizer [38]. The objective loss
function of i-th LSTM is formulated as [4]:

∑− + − −∼ ∼
=

y y y ymin [ log (1 ) log(1 )]
k

F
k

i
k

i
k

i
k

1

( ) ( ) ( ) ( )

(16)

where y k( ) is the real label of k-th sample in training data, and ∼yi
k( ) is the

assessment result of i-th LSTM for k-th sample in training data at last
instant of simulation. The objective loss function is binary cross-en-
tropy, which can evaluate the performance of the i-th LSTM in the
training procedure.

3.2.2. Ensemble Mechanism for LSTM
In the supervised learning algorithm of machine learning, the goal is

to learn a stable classifier (such as a single LSTM) that performs well in
all scenarios, but the actual situation is often not so ideal. Sometimes it
can only get a classifier with preferences (weak classifiers perform
better only in few cases). Therefore, ensemble learning is employed to
combine multiple weak classifiers to get a better and more compre-
hensively strong classifier. For an ensemble model with excellent gen-
eralization, the key point is the high diversity both in data and the
structure of weak classifiers.

It is assumed that there are M PMU clusters obtained by the optimal
PMU clusters searching model. Then, M LSTMs are needed to construct
the ensemble model. To keep high diversity in the data, M training data
subsets are sampled from the training data while training features in
every training data subset are determined by observable features of
each PMU cluster. The dropout technique [37], which randomly drops
out some neurons of LSTM hidden layers, is employed in learning
structure diversity. Therefore, diversity in data and structure for en-
semble learning are both achieved. In a word, the proposed ensemble
LSTM has the capability to merge multiple PMU clusters without losing
generalization or comprehensiveness.

As M diverse LSTM classifiers have been trained, how to integrate
them to make credible TSA is the critical step of the ensemble me-
chanism. At present, the common way of researches in the ensemble
model to merge multiple classifiers is average integration or majority
voting. However, since observable features of each PMU cluster are
different, the performance of each LSTM classifier is distinct. As a re-
sult, the generalization of ensemble LSTM will be damaged just by way
of average integration or majority voting. In this paper, an ensemble
method based on weighted averaging is proposed to integrate LSTMs.
Weight is assigned to each LSTM offline, and the final assessment result

of ensemble LSTM is the weighted averaging of all the LSTM outputs,
which is formulated as:

=
∑

∑
= ⋯∼

∼
=

=

y
ω y

ω
t T* , 1, 2, ,t

i
M

i i t

i
M

i

1 ,

1 (17)

where ωi is the weight of the i-th LSTM, it can be calculated by the
reciprocal of validation error that is acquired by applying validating
data to each trained LSTM respectively. The ∼yi t, is the assessment result
of the i-th LSTM for TSA at time t .

3.3. Online spatial-temporal adaptive TSA

A time-adaptive TSA method is proposed in [4] to combine histor-
ical information with current information to generate a reliable as-
sessment as soon as possible, and it is further utilized to handle the TSA
problem with time-delayed synchronized phasors in [27]. Specifically,
once the fault is cleared, the stability of power system can be de-
termined, so the violent dynamics will be gradually damped or just
enhanced. If the angular difference can be damped, the later the time
after fault clearance is, the less violent the dynamic behavior is, and the
confidence of the model to the assessment result becomes greater.
Otherwise, in the unstable scenario, the dynamic behavior would be
more drastic over time after fault clearance and the assessment result of
the model would be more credible. To obtain fast assessment speed, a
time-adaptive mechanism is designed, and the judgement can be made
if the assessment result is credible enough. However, once some fea-
tures of inputs remain missing along the timeline, the performance of
the time-adaptive model could deteriorate.

In this section, a spatial-temporal adaptive TSA method is proposed
to reduce the impacts on reliability of assessment under missing data,
which includes PMU failures and communication delay, et al.
Specifically, spatial information, which is represented by PMU clusters,
and temporal information are employed to make use of the remaining
information in the available PMUs to assess stability status rapidly.
Consequently, remedial action can be conducted in a timely manner to
maintain the security of the power system.

As Fig. 4 shows, the online spatial-temporal adaptive TSA can be
carried out when offline training is finished, where x , x , xt T1 f are
transient features at time t T1, ,f respectively after fault clearance. It is
assumed that the PMU failure happens at time tf after the fault is
cleared. If =t 1f , the remaining available LSTMs, which are determined
with missing data, will be integrated to assess the stability of the power
system reliably. If >t 1f , the decision will be made by fusing assessment
results at t of remaining available LSTMs and assessment results at
−t 1f of affected LSTMs. Therefore, the method of integration is re-

written as:

Fig. 4. Training and online application of spatial-temporal adaptive TSA.
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where Ω is the set of remaining available LSTMs under missing data
event, ∼

−yj t, 1f is assessment result of the j-th LSTM for TSA at time
−t 1f and ∼yi t, is assessment result of the i-th LSTM for TSA at time t .

From formula (18), if >t 1f , it can be seen that the final TSA result ∼y *t is
weighted averaging of assessment results at time −t 1f of the un-
available LSTMs affected by PMU failure and assessment results at time
t of available LSTMs. In that way, the spatial-temporal information can
be efficiently utilized since the information of affected LSTMs is in-
tegrated into unaffected LSTMs adaptively to perform TSA, while ex-
isting methods can only make use of unaffected predictors at a fixed
observation window.

To acquire a credible TSA result, the stability index can be defined
as [4]:
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where δ is the stable threshold that needs to be determined by para-
meter searching to balance the speed and accuracy of TSA. In the
adaptive procedure, if the stability index is “Stable” or “Unstable” at
time t , the spatial-temporal TSA result ∼y *t is regarded as credible to stop
the assessment manner. If the stability index is “Unknown”, the his-
torical information ht and ct will be transferred to available LSTMs at
the next instant and combined with +xt 1 to conduct TSA until the TSA
result is credible or the max assessment time Tmax is reached.

4. Simulation results

In this section, the proposed approach is demonstrated with New
England 39-bus power system, and all simulations are conducted on a
laptop with Intel Core i5-7300HQ CPU, 8 GB RAM and a 1050 2D/3D
graphics card with 2 GB memory.

4.1. Data generation

New England 39-bus power system [39], as shown in Fig. 5, is

utilized to train and test the spatial-temporal adaptive TSA model. The
test system consists of 39 buses, 46 branches, 10 generators and 19
loads. The reference power is 100 MVA, and the reference voltage is
345 kV. The PMUs are placed at bus 3, 8, 10, 16, 20, 23, 25 and 29,
which assure full observability with minimum number of PMUs. Para-
meters of dynamic models are taken from [39] except subtransient
parameters of generators from [40], where loads are considered to have
a voltage dependency according to Eqs. (21) and (22) and the para-
meter kpu is set to 1 (constant current behaviour for active power) and
kqu to 2 (constant impedance behaviour for reactive power).

⎜ ⎟= ⎛
⎝

⎞
⎠

P P U
U

kpu

0
0 (20)

⎜ ⎟= ⎛
⎝

⎞
⎠

Q Q U
U

kqu

0
0 (21)

where the subscript 0 indicates the initial operating condition. P is
active power, Q is reactive power and U is voltage.

Before data generation, the physical facts of input features reflecting
how rotor angle stability is affected in time is discussed, so physical
insight on the actual dynamic behavior of the system can be further
mined. Since the imbalanced active power in generators is the main
factor affecting the transient stability, the active power of each gen-
erator is plotted in Fig. 6, which shows that the large imbalanced active
power of generators leads to instability. Reactive power and voltage
also determine the distribution of power flow in power system and
thereby has impacts on the imbalanced power, so bus voltage magni-
tude, bus voltage angle, active power of branch, reactive power of
branch, active power of load, reactive power of load, active power of
generator and reactive power of generator are considered as input
features.

Based on the New England 39-bus power system, batch TDS is
performed on PSS/E, which is the commercial power system analysis

Fig. 5. New England 39-bus power system.
Fig. 6. (a) Dynamic behavior in stable scenario; (b) dynamic behavior in un-
stable scenario.
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software, to generate massive reasonable datasets to train the proposed
model by considering different operation conditions and contingencies.
Consequently, 5775 samples are generated according to the following
principles:

• 11 different kinds of load levels (75%, 80%, 85%, 90%, 95%, 100%,
105%, 110%, 115%, 125% of basic load level) are considered, and
the powers of the generator are adjusted to the same ratio of basic
power as load.

• For each power flow level, three-phase short-circuit fault is applied
to every bus and four locations (20%, 40%, 60%, 80% of the length)
on the transmission line, respectively.

• In the TDS, the fault duration is set to 0.1 s, 0.3 s or 0.5 s for a
specific fault to clear after the disturbance.

• The length of the simulation time is set to 10 s to label the transient
stability status accurately.

PSS/E has application programming interface (API) of Python, so
we can use Python to perform batch program of time domain simulation
with PSS/E. What we need to do is to scan contingency set for each
operation condition, and the above process is shown in Fig. 7.

All the samples are divided into training data, validating data and
testing data in the ratio of 3:1:1, where the training data are utilized to
train the single LSTM for each PMU cluster, the validating data are used
to implement weighted averaging for ensemble LSTM, and the perfor-
mance of the spatial-temporal adaptive TSA model is assessed with
testing data.

In the simulation, the main control parameters shall be defined to
train the proposed model, and all parameters are selected according to
the performance of response time and accuracy of TSA. Two LSTM
layers with 100 memory cells in each layer are introduced to build the
single LSTM for every PMU cluster. To obtain the structure diversity of
the model, the dropout rate for each LSTM layer is set to 0.05. The
training epoch is 200, and the input size of each single LSTM is the
number of features in the corresponding PMU cluster. Referring to [4],
the maximum assessment time Tmax is set to 20. Main parameters of GA,
generations and population size, are 40 and 40 respectively, other
parameters of GA are assigned with default values in Matlab.

4.2. Results of optimal PMU clusters searching

4.2.1. Distribution of temporal feature importance
Since the optimal PMU clusters are optimized based on the im-

portance of temporal features, the temporal feature with larger im-
portance has a stronger capability to distinguish the different classes.
By applying the proposed Relief-FT algorithm, the importance values of
all temporal features are estimated as shown in Fig. 8(a) and ranked in
descending order. All the temporal features have positive importance
values to separate samples among classes.

The temporal feature importance of various PMU clusters is dif-
ferent due to their different observability, and the importance dis-
tribution among various PMU clusters is shown in Fig. 8(b). The X-axis
numbers temporal feature subsets of different PMU clusters, and the Y-
axis shows the sum of the importance of each temporal feature subset.
Generally, the more PMUs in the PMU cluster, the larger the sum of
their importance. It will lead to more excellent generalization but
higher risk when affected by missing data. Therefore, suitable PMU
clusters shall be found to maintain generalization with minimum risk.

4.2.2. Optimal PMU clusters
In the WAMS of practical power systems, the probability of a single

PMU failure event is very small, so the unavailability of a single PMU is
assumed to be 0.02 according to the previous evaluation results of the
reference [29]. Therefore, the availability of a single PMU is 0.98. To
quantitatively analyze the risk of PMU clusters under missing data, the
robustness index is defined as the absolute value of the objective
function in the optimal PMU clusters searching model proposed in
Section 2.

Fig. 7. Flowchart of batch program of time domain simulation.

Fig. 8. (a) The importance of each temporal feature; (b) The importance of each
temporal feature subset.
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As Fig. 9 shows, the robustness of the PMU clusters under missing
data is the highest when the number of PMU clusters is 17. In other
words, the risk of PMU Clusters under missing data is lowest with 17
PMU Clusters. Intuitively, robustness is defined as the sum of the ratio
of the temporal feature importance in the available PMU clusters to the
sum of the temporal feature importance in all the PMU clusters after
data loss occurs. Considering two extreme scenarios: (1) If there is only
one PMU cluster with just one input for the model, the performance of
the model will be destroyed when PMU failures happen. Then the ro-
bustness is zero; (2) If there are too many PMU clusters, some re-
dundancies are inevitable, and the robustness will be reduced. There-
fore, the more PMU clusters, the greater the robustness. But the
robustness will decrease after the number of PMU clusters reaches a
certain amount, and there must be a suitable number of PMU clusters as
obtained in this paper.

Consequently, the optimal number of PMU clusters with the highest
robustness are chosen to reduce the impacts of missing data. All the
PMU clusters are listed in detail in Table 1. Compared with [30] and
[31], the number of PMU clusters in this paper is less, which results in
reducing the computation consumption, since the proposed method
only needs to satisfy the full observability of buses while other methods
require the full observability of all features in [30] and [31].

4.3. LSTM ensemble training

Based on the temporal features observed of each PMU cluster ob-
tained by the optimal PMU clusters searching model, every single LSTM
in ensemble LSTM is trained separately. The control parameters of each
single LSTM training are following as Section 4.1. Finally, 17 LSTMs are
trained, and integrated with the respective reciprocal of validation
error to form ensemble LSTM.

To make the trade-off between accuracy and speed for TSA, the

reasonable stability threshold δ and the length of the observation
window T shall be defined. The 50 δ values in the range of [0.5,0.99]
with a step size of 0.01 are simulated, the average response time (ART)
[26] and accuracy against δare plotted in Fig. 10(a). ART increases with
the δ values due to the increase of the unknown interval. =δ 0.55 is
preferred to acquire the most rapid assessment speed while keeping the
highest TSA accuracy for ensemble LSTM. Fig. 10(b) indicates the re-
lationship between T and accuracy, ART, respectively. The response
time will get longer while the length of the observation window be-
comes larger, so =T 4 with the highest accuracy is preferred. The ac-
curacy of TSA is not higher with the increase of T owing to the in-
formation loss at the earlier time under larger T .

4.4. Performance comparison under missing data

To demonstrate the superiority of the proposed method both in
response time and accuracy, the performance of existing TSA methods
considering PMU failure is compared. For a fair comparison, the length
of the observation window is set to =T 4 for all methods, and the same
database is utilized to evaluate their performance. They are mean im-
putation (MI) [42], DTSS, random forest with surrogate split (RFSS)
[43] and ensemble random vector functional link (Ensemble RVFL)
[30] respectively.

4.4.1. The expectation of response time analysis
The length of the observation window of the existing TSA methods

considering PMU failure is fixed due to their mechanisms of receiving

Fig. 9. The relationship between robustness and the number of PMU clusters.

Table 1
Optimal PMU clusters.

Methods PMU clusters

Proposed method {8},{23},{25},{3,16},{3,25},{8,20},{8,25},{10,16},{10,23},{16,20},{16,23},{20,25},{25,29},{3,10,23}, {3,10,25}, {16,23,25}, {3,8,10,25}
Method in [31] {3},{8},{10},{16},{20},{23},{25},{29},{3,8},{3,16},{8,25},{16,20},{16,23},{3,8,10},{3,8,25},{3,10,16},{3,16,25},{3,16,29},{3,16,25,29}

Fig. 10. (a) δ Sensitivity analysis; (b) T sensitivity analysis.
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input features. However, the method presented in this paper can be
used to assess the power system adaptively in timeline, which means it
can reduce the response time of TSA. For the sake of studying the effect
of PMU failure on the response time of the proposed method, two re-
sponse time indexes are defined as:

• The expectation of ART for every timestamp:

∑= −
=

−E R C P P R( ) (1 )T
t

i

N

N
i N i i

i t
0

,0
(23)

• The expectation of ART for different number of missing PMUs:

∑=
=

E R
T

R( ) 1
T
i

t

T

i t
0 1

,0

0

(24)

where CN
i is the number of possible missing PMU combinations for i

PMUs, and Ri t, is average ART for i missing PMUs if the PMU failure
happen at time t . Besides, T0 represents the valid length of the assess-
ment time; thus, T0 of other methods is fixed to 4, while it is 5 for the
proposed method to implement adaptive assessment according to si-
mulation result (the response time in Fig. 11(a) after time =t 5 is not
change any more).

As Fig. 11(a) shows, while the response time decreases from PMU
failure occurrence time =t 2 to =t 5, it demonstrates a reverse trend
with the increase of missing PMUs in Fig. 11(b). Essentially, the re-
sponse time increases due to the loss of information in the PMU data,
but the proposed method can still sustain a quick response time through
making use of historical temporal data that are not affected by PMU
failure. However, PMU failure occurring at time =t 1 presents a shorter
response time compared with time =t 2 to =t 4 since there is no his-
torical information to be utilized to further confirm the stability status
of the power system, leading to a quicker decision but lower accuracy.
In addition, 8 missing PMUs result in shorter response time because of
sacrificing the accuracy (when there is no data for assessment, all sce-
narios are judged to be unstable).

4.4.2. The expectation of accuracy analysis
Two accuracy indexes are also defined to describe the effect of PMU

failure on the accuracy of the proposed method as follows:

• The expectation of accuracy for every timestamp:

∑=
=

E A
T

A( ) 1
T
i

t

T

i t
0 1
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(25)

• The expectation of accuracy for different number of missing PMUs:
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i t
0
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where Ai t, is the average accuracy for i missing PMUs if the PMU failure
happens at time t. Fig. 12 presents the expectation of accuracy result
against different PMU failure occurrence instants and various numbers
of missing PMUs, respectively. Accuracy of all methods is almost not
affected by PMU failure occurrence instant in Fig. 12(a), while it shows
a downward trend with the increase of missing PMUs in Fig. 12(b).
However, the proposed method achieves the highest accuracy until 6
PMUs fail compared with other methods, because it is able to make
rapid and credible decisions based on spatial-temporal information
adaptively from LSTM and optimal PMU clusters. The proposed method
can still sustain the average accuracy of 91.65% even if all PMUs fail,
since all samples are assessed to be unstable when there is no any
spatial-temporal information to be used to analysis. However, the
average accuracy of other methods drops sharply in the same situation.

Fig. 11. (a) The expectation of ART with different PMU failure occurrence in-
stant; (b) The expectation of ART with different mount of missing PMUs.

Fig. 12. (a) The expectation of accuracy with different PMU failure occurrence
instants; (b) The expectation of accuracy with different mount of missing PMUs.
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4.4.3. Model performance comparison
To compare the overall performance of all methods with missing

data, two indexes are defined as:

• The expectation of overall ART:

∑∑= −
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C P P R( ) 1 (1 )
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• The expectation of overall accuracy:
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As shown in Table 2, the proposed method outperforms other
methods both in accuracy E R( ) and response time E A( ) under all
possible PMU failure events. Besides, the box plot in Fig. 13 illustrates
the accuracy preference distribution of all methods, and the inter-
quartile range (IQR) distribution (the red region), which is equal to the
difference between the 75th and 25th percentiles, demonstrates that the
proposed method is significantly more robust than other methods with
missing data as indicated by the smallest IQR. The proposed method is
able to obtain more important temporal features in dynamic response
by the optimal PMU clusters searching method and it also utilizes LSTM
to extract spatial-temporal information deeply. As a result, it can catch
efficient transient characteristics and achieve high accuracy. Mean-
while, the proposed method adopts a spatial-temporally adaptive way
to assess transient stability, so it can reduce the impacts of PMU failures
and make reliable decision earlier. However, other methods, made of
shallowed learning machines, handle missing data by simply padding
average value (MI), similar feature (DTSS and RFSS), or do not take
critical temporal features into consideration (Ensemble RVFL) so they
suffer from PMU failures more seriously. And other methods make
decision after a fixed observation window, while the proposed method
can analysis stability of power system time-adaptively. Therefore, the
proposed method is more robust and reliable for rapid and accurate TSA
under any possible PMU failure events.

4.4.4. Model performance under unlearned faults
The proposed model is built with training datasets and validation

datasets which only cover a certain number of faults, but there may be
some potential faults the model does not learn at the online application
stage. Since the unlearned faults may have greatly different dynamic
distribution compared with learned faults, the test to verify the model
robustness to unlearned faults is needed.

In this paper, single faults which are three-phase short-circuit on all
buses and lines are considered, so the proposed model has enough
capability of assessing these cases. However, multi-fault is not included.
Since it is a rare case that several faults happen at the same time, we
only consider two faults happening at the same time as an illustration to
simplify analyses. If time interval between several faults are too long,
we think it can be seen as several individual faults to be assessed se-
parately. As removing bus 16 and bus 17 can divide New England 39-
bus power system into two areas, the two bus are considered to be
critical buses in dynamic behavior. And it is a very severe-case scenario
if the two buses are imposed with faults at the same time. Therefore,
bus 16 and bus 17 are applied with three-phase short-circuit fault si-
multaneously and simulation configuration is same as Section 4.1.

Simulation results are presented in Table 3. From the results, it can
be seen that the proposed model achieves higher accuracy (97.96%)
and shorter response time (1.191 cycles) than other methods. As for
higher accuracy, the proposed model is constructed by PMU clusters
based on temporal feature importance and LSTM which can extract
spatial-temporal information from power system dynamic behavior, so
the proposed model can catch critically common features of faults ef-
ficiently though dynamic distribution caused by unlearned faults is
greatly different from that caused by learned faults. However, other
methods based on shallowed learning machines perform badly under
unlearned faults, since they don’t have enough ability to extract criti-
cally common features between faults or don’t take the importance of
temporal features in power system into consideration.

On the other hand, the proposed model under faults simultaneously
on bus 16 and bus 17 has a shorter response time than under learned
faults. Since the unlearned fault is severer than single faults in training
datasets (because the unlearned faults are applied to critical buses at
the same time), the proposed model can make decision earlier with
adaptive assessment mechanism rather than wait decision for the ob-
servation window of a certain length.

4.4.5. The effect of PMU noise
In previous analyses, we assume that PMUs can accurately sample

system variables in high frequency. However, PMUs suffer from wide-
area noise which leads to measurement error. According to IEEE
Standard of Synchrophasor Data Transfer for Power Systems
(C37.118.2-2011) [44], the measurement error of a vector cannot ex-
ceed 1% of its real value for all PMUs. To verify the robustness of the
proposed method to wide-area noise, a numerical simulation is per-
formed in this test.

In order to generate noise complying with IEEE standard, the ap-
proach in [29] is followed. Then, the simulated wide-area noise is
added to datasets and other settings are same as the previous simula-
tions. Results are summarized in Table 4 and it can be concluded that
the proposed method achieves superior performance than existing
methods. Accuracy of the proposed method only slightly influenced by

Table 2
Overall performance comparison.

Method E A( ) E R( )

Proposed method 99.47% 1.20 cycles
MI 98.67% 4 cycles
DTSS 97.04% 4 cycles
RFSS 98.61% 4 cycles
Ensemble RVFL 98.94% 4 cycles

Fig. 13. The accuracy preference distribution of all methods.

Table 3
Overall performance comparison under unlearned faults.

Method E A( ) E R( )

Proposed method 97.96% 1.191 cycles
MI 81.98% 4 cycles
DTSS 92.26% 4 cycles
RFSS 95.54% 4 cycles
Ensemble RVFL 73.39% 4 cycles

B. Tan, et al. Electrical Power and Energy Systems 123 (2020) 106237

10



noise since it has great capacity of extracting spatial-temporal in-
formation from power system dynamic measurement, while its response
time (1.188 cycles) is slightly shorter than noiseless data due to some
sample around stability margin corrupted by noisy data.

4.4.6. Model performance under random variation of generation and
demand

To consider the random variation of generation and demand of a
modern power system, we generate samples according to [45]. The
output of the generator on bus 37 varies between zero and rated power,
and each load is assumed to vary between 0.6 and 1.4 of their nominal
values. The output of the generator on bus 37 and loads are assumed to
be normally distributed, and the operation instances are obtained by
Monte-Carlo technique [46] that randomly samples the output of the
generator on bus 37 and each load within their variation range. Among
these instances, the non-convergent ones are ignored and we only apply
three-phase short-circuit fault to each bus in the New England 39-bus
power system. Besides, the fault duration is set to 0.2 s. Finally, 200
operation instances are randomly sampled and 7800 samples are ob-
tained.

The performance of the proposed method on these random samples
is shown in Table 5. It can be seen that the proposed method performs
TSA well in the highly variable generation and demand while other
methods suffer overfitting, because the proposed method tries to depict
the stability margin rather than just memorize samples [47,48]. The
proposed method in this paper is robust to different operation condi-
tions, since the stability margin of power system doesn’t change unless
the topology changes.

5. Conclusions

In this paper, a spatial-temporal adaptive method based on en-
semble LSTM to implement rapid and credible TSA with missing data
has been developed. The idea is to integrate LSTM classifiers auto-
matically according to PMU clusters and implement TSA adaptively
with the temporal data when PMU failure occurs. To do so, Relief-FT is
proposed to calculate the importance of temporal features, and the
optimal PMU clusters searching model is built to find observability-
constrained temporal feature subsets to reduce the risk of missing data
based on the feature importance. Furthermore, a novel ensemble me-
chanism for time-adaptive LSTM is designed to improve the perfor-
mance of the accuracy and response time for TSA with the feature
subsets. The simulation results using the New England 39-bus power
system reveal that the number of missing PMUs is the major factor that
deteriorates the performance of TSA in missing-data scenarios.
Compared with existing methods, besides outperforming them both in

accuracy and response time, the proposed method shows more ro-
bustness on TSA with PMU failure events.

However, data injection attacks are becoming more and more
threatening with the development of the smart grid. Therefore, the
approach to deal with data incorrectness issues for TSA to avoid serious
losses will be studied in future work. Also, if topology changes, the
learnt patterns are different. And transfer learning will be studied and
employed in future work to improve the generalization of the proposed
method when the topology changes.
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